PV energy yield estimates

How to calculate P75, P90, P95, and P99 energy yield estimates.

N RatedPower

Meet the host

Faten Driss

Technical Advisor at **RatedPower**

Passionate for renewables and a sustainable world. Part of the Customer Success team at RatedPower fdriss@ratedpower.com

PV energy yield estimates: How to calculate P75, P90, P95, and P99 energy yield estimates.

Agenda for today

5 Conclusion

PV energy yield estimates: How to calculate P75, P90, P95, and P99 energy yield estimates.

Introduction

∧ RatedPower

Overview of pvDesign

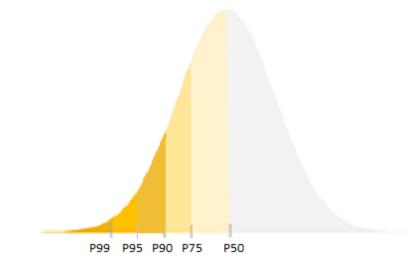
The Importance of Probabilistic Analysis

No RatedPower

Probabilistic Analysis

- More accurate and comprehensive understanding of potential energy yields
- Acknowledges and quantifies the inherent uncertainties associated with solar energy generation

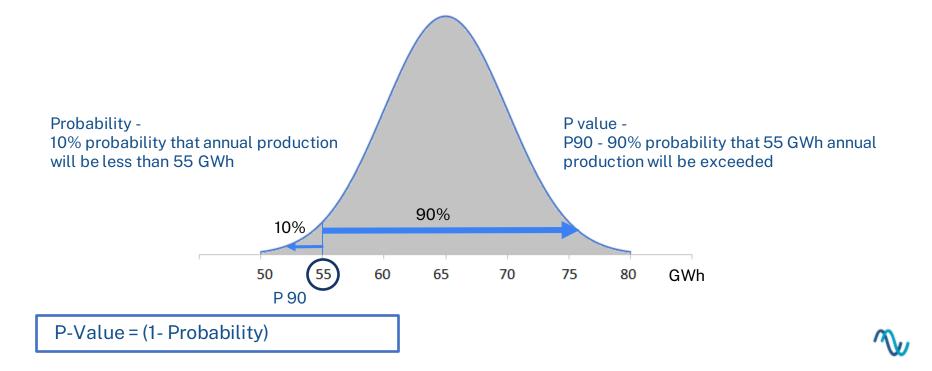
- Empowers project developers to make informed decisions based on a range of possible outcomes
- It allows project developers to assess the project's performance under different scenarios, identify potential risks, and optimize project parameters to maximize energy production


Calculating P75, P90, P95, and P99

Energy Yield Estimates with pvDesign

No RatedPower

How pvDesign calculates P75, P90, P95, and P99 Energy Yield Estimates



 Simulation 	
Years of Simulation	25
Interannual variability ₍₎ (standard deviation)	3.00 % Min: 0.01 %
	Max: 100 %

Mean value : P50 Standard deviation: input %

P value Vs. Probability

											_
Z	.00	.01	.02	.03	.04	.05	.06	(.07)	.08	.09	
0.0	.50000	.50399	.50798	.51197	.51595	.51994	.52392	.52790	.53188	.53586	
0.1	.53983	.54380	.54776	.55172	.55567	.55962	.56356	.56749	.57142	.57535	
0.2	.57926	.58317	.58706	.59095	.59483	.59871	.60257	.60642	.61026	.61409	
0.3	.61791	.62172	.62552	.62930	.63307	.63683	.64058	.64431	.64803	.65173	
0.4	.65542	.65910	.66276	.66640	.67003	.67364	.67724	.68082	.68439	.68793	
0.5	.69146	.69497	.69847	.70194	.70540	.70884	.71226	.71566	.71904	.72240	
(0.6)	.72575	.72907	.73237	.73565	.73891	.74215	.74537	.74857	.75175	.75490	
0.7	.75804	.76115	.76424	.76730	.77035	.77337	.77637	.77935	.78230	.78524	
0.8	.78814	.79103	.79389	.79673	.79955	.80234	.80511	.80785	.81057	.81327	
0.9	.81594	.81859	.82121	.82381	.82639	.82894	.83147	.83398	.83646	.83891	
1.0	.84134	.84375	.84614	.84849	.85083	.85314	.85543	.85769	.85993	.86214	
1.1	.86433	.86650	.86864	.87076	.87286	.87493	.87698	.87900	.88100	.88298	
(1.2)	.88493	.88686	.88877	.89065	.89251	.89435	.89617	.89796	. <mark>89973</mark>	.90147	
1.3	.90320	.90490	.90658	.90824	.90988	.91149	.91309	.91466	.91621	.91774	
1.4	.91924	.92073	.92220	.92364	.92507	.92647	.92785	.92922	.93056	.93189	
1.5	.93319	.93448	.93574	.93699	.93822	.93943	.94062	.94179	.94295	.94408	
(1.6)	.94520	.94630	.94738	.94845	.94950	.95053	.95154	.95254	.95352	.95449	_
1.7	.95543	.95637	.95728	.95818	.95907	.95994	.96080	.96164	.96246	.96327	
1.8	.96407	.96485	.96562	.96638	.96712	.96784	.96856	.96926	.96995	.97062	Г
1.9	.97128	.97193	.97257	.97320	.97381	.97441	.97500	.97558	.97615	.97670	
2.0	.97725	.97778	.97831	.97882	.97932	.97982	.98030	.98077	.98124	.98169	
2.1	.98214	.98257	.98300	.98341	.98382	.98422	.98461	.98500	.98537	.98574	L
2.2	.98610	.98645	.98679	.98713	.98745	.98778	.98809	.98840	.98870	.98899	
2.3	.98928	.98956	<mark>.98983</mark>	.99010	.99036	.99061	.99086	.99111	.99134	.99158	
2.4	.99180	.99202	.99224	.99245	.99266	.99286	.99305	.99324	.99343	.99361	
2.5	.99379	.99396	.99413	.99430	.99446	.99461	.99477	.99492	.99506	.99520	
2.6	.99534	.99547	.99560	.99573	.99585	.99598	.99609	.99621	.99632	.99643	
2.7	.99653	.99664	.99674	.99683	.99693	.99702	.99711	.99720	.99728	.99736	
2.8	.99744	.99752	.99760	.99767	.99774	.99781	.99788	.99795	.99801	.99807	
2.9	.99813	.99819	.99825	.99831	.99836	.99841	.99846	.99851	.99856	.99861	
3.0	.99865	.99869	.99874	.99878	.99882	.99886	.99889	.99893	.99896	.99900	
3.1	.99903	.99906	.99910	.99913	.99916	.99918	.99921	.99924	.99926	.99929	
3.2	.99931	.99934	.99936	.99938	.99940	.99942	.99944	.99946	.99948	.99950	
3.3	.99952	.99953	.99955	.99957	.99958	.99960	.99961	.99962	.99964	.99965	
3.4	.99966	.99968	.99969	.99970	.99971	.99972	.99973	.99974	.99975	.99976	

	Formula		
P75 uncertainty	0.675*STDEV		
P90 uncertainty	1.282*STDEV		
P99 uncertainty	2.326*STDEV		

	Probability of exceedance	Formula
P75 value	75%	P50 value *(1- P75 uncertainty)
P90 value	90%	P50 value *(1- P90 uncertainty)
P99 value	99%	P50 value *(1-P99 uncertainty)

Incorporating Uncertainty into Energy Yield

Calculations

Normal RatedPower

Sources of uncertainty in energy yield calculations

Interannual Variability

- While the Typical Meteorological Year (TMY) provides a representative or "typical" year for solar resource assessment, actual meteorological conditions can vary from year to year.
- → The standard deviation quantifies the extent of this variability, reflecting the instability of weather patterns. This interannual variability is a primary source of uncertainty and contributes significantly to the overall uncertainty in energy yield estimates

Uncertainty of the Energy Simulation Model

- Energy simulation models used to estimate energy yields rely on various assumptions and empirical equations.
- The standard deviation represents the acceptable level of error or uncertainty associated with the simulation model's methodologies.
- This includes factors such as equipment performance estimation, losses due to shading, soiling, and other operational aspects.
- The standard deviation encompasses the range of potential deviations from the expected energy yield due to these uncertainties.

Sources of uncertainty in energy yield calculations

Uncertainty of the Meteorological Data Model:

The methodology used to calculate Global Horizontal Irradiance (GHI), a critical parameter for solar energy estimation, has inherent limitations and potential errors.

→ The standard deviation captures the permissible margin of error in the meteorological data model employed for GHI calculations. It accounts for uncertainties related to data collection, measurement techniques, and interpolation methods used in generating the meteorological dataset.

$$\mathbf{U}_{total} = \sqrt{\mathbf{U}_{model}^2 + \mathbf{U}_{simulation}^2 + \mathbf{U}_{interannual}^2}$$

$$\sqrt{}$$

Uncertainties input in pvDesign

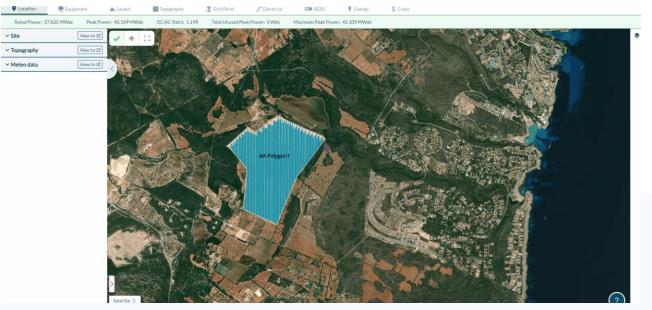
^ Meteo	o data	How to 🗹	^ ₽V
	↑ Upload meteo		First
Currently	selected		Degra
	TMY_B	:	
CUSTOM	GHI: 1749 kWh/m2 Show details		Yearly
Rest of the	emeteo		Modu
*	TMY_A	:	Mouu
CUSTOM	GHI: 1757.63 kWh/m Show details	2	Light
	PVGIS		Degra
PVGIS 5	GHI: 1757.63 kWh/m Show details	2	Miana
	NASA_POWER		Mism
NASA POWER	- GHI: 1659.2 kWh/m2 <u>Show details</u>		Bifaci
	NASA_SSE		2
NASA	GHI: 1663.72 kWh/m	2	

^ PV mod	∧ PV module losses					
First Year Degradatio	n		0.30	%		
Degradatio						
Yearly Deg	Yearly Degradation		0.30	%		
Module Qu	uality	i	-0.70	%		
Light Induc	red			07		
Degradatio		i	2.00	%		
			4.00	07		
Mismatch		i	1.00	%		
Bifacial Mi	smatch	(i)	10.00	%		
Diracial Mi	Smatth	0	10.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

^ Simulation 25 Years of Simulation Interannual % 3.00 variability (i) Min.: 0.01 % (standard deviation) Max.: 100 % Soiling losses Front face • Yearly soiling losses 2.00 % Monthly soiling losses **Back face** • Yearly soiling losses 0.00 % Monthly soiling losses

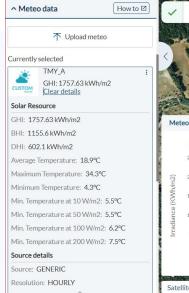
pvDesign probabilistic yield output

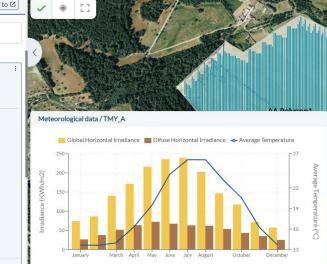
Language EN ES FR PT	IT ZH J	P DE
All documents		
Documents		
Design Report	DOCX	PDF
Energy Yield Report	DOCX	PDF
Interconnection Facility Report	DOCX	PDF
Spreadsheets		
Project Sheet		XLSX
Bill of Quantities		XLSX
Financial analysis		XLSX
Energy Yield Results		XLSX
Listing of cables		XLSX
Listing of posts		XLSX
Terrain XYZ		CSV
New Power flow model		XLSX
Drawing		
General Layout	DXF KML	PDF
Lavout 3D		DWG
<u>(</u>	Cancel Dov	vnload


Table 23. Probabilistic yield estimation

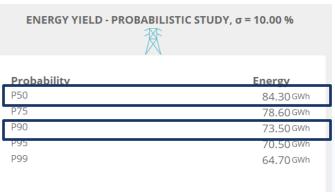
Probability	Energy yield [GWh]
P50	80.0
P75	77.5
P90	75.3
P95	73.9
P99	71.4
ENERGY YIE	LD - PROBABILISTIC STUD
ENERGY YIE	LD - PROBABILISTIC STUD
ENERGY YIE	LD - PROBABILISTIC STUD
	LD - PROBABILISTIC STUD
Probability	LD - PROBABILISTIC STUD
ENERGY YIE Probability P50 P75	LD - PROBABILISTIC STUD
Probability P50	LD - PROBABILISTIC STUD
Probability 250 275	LD - PROBABILISTIC STUD

1. Project Overview:

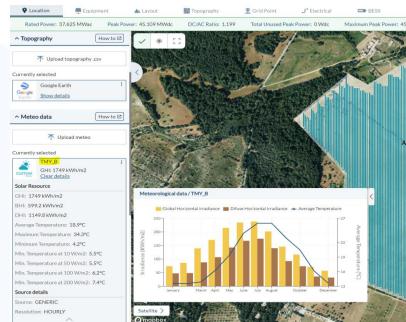

- Location: Choose a location with known variability in weather conditions.
- System Capacity: Select a suitable system capacity.



2. Data Selection and simulation:


• Input Meteorological Data: Select two different Models for the Metorological data.

Model A: TMY_A with a standard deviation of 10.0%


Results:

2. Data Selection and simulation:

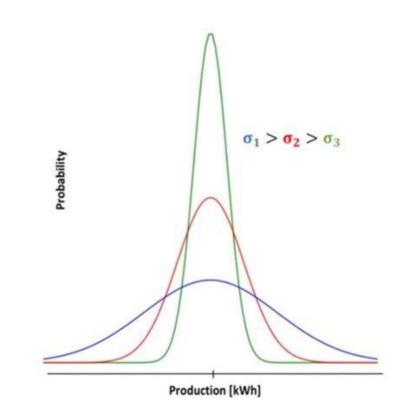
• Input Meteorological Data: Select two different Models for the Metorological data.

Model B: TMY_B with a standard deviation of 4.60%

Results:

Probability	Energy
P50	79.70 GWh
P75	77.20 GWh
P90	75.00 GWh
P95	73.60 GWh
P99	71.10 GWh

3. Comparison


The sample shows that even in the case that **P50 value provided by model B is lower than model A**, the difference **in terms of uncertainty** results in **model B providing more favorable financial conditions** for the project, with a **P90 value that is higher.**

Model	А	В	P90 _B P50 _B
TMY	Source A	Source B	
Standard deviation	10.0%	4.6%	P90 _A P50 _A
Most expected value (P50)	84.3 GWh	79.70 GWh	
P90	73.5 GWh	75.00 GWh	73.5 75 79.7 84.7 GWh

Discussion and analysis

- The lower your sigma, the narrower the Gauss bell will be.
- Good models have known and lowest possible uncertainty.
- Performance Optimization
- Importance of uncertainties
- Financial Considerations

Conclusion

∧ RatedPower

₩ RatedPower

Questions? We're all ears

Please, use the questions box in the GoToWebinar control panel to ask me any doubt you may have.

